a2 United States Patent

Adams

US009250784B2

(10) Patent No.: US 9,250,784 B2
(45) Date of Patent: Feb. 2, 2016

(54) EVENT VISUALIZATION AND CONTROL

(71) Applicant:

(72) Inventor:

(73) Assignee:

(*) Notice:

(21) Appl. No.:
(22) Filed:

(65)

International Business Machines
Corporation, Armonk, NY (US)

Tina M. Adams, San Jose, CA (US)
INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 305 days.

13/691,156

Novw. 30, 2012

Prior Publication Data

US 2014/0157164 Al Jun. 5, 2014

(51) Int.CL

GO6F 3/0484 (2013.01)
GO6F 3/0486 (2013.01)

(52) US.CL

CPC
(2013.01); GOGF 2201/86 (2013.01); GO6F

... GO6F 3/0486 (2013.01); GOGF 3/0484

2201/875 (2013.01)

(58) Field of Classification Search

USPC ...

.. 715/769, 772

See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

5,369,570 A

6,985,901 Bl
8,639,772 B2

2008/0126858 Al

* 11/1994 Parad ... G06Q 10/06
700/99

* 1/2006 Sachse ... HO4L 41/5032
* 12014 Gentile HO4L 47/821
709/217

5/2008 Barras

300

Toolcar
31

2008/0196006 Al 8/2008 Bates et al.
2011/0154286 Al 6/2011 Schaw et al.
2011/0261049 Al 10/2011 Cardno et al.

OTHER PUBLICATIONS

Lunia, S.-et al.; “User Interface for Efficient Visualization and
Prioritization of Online Advertising”; http://www.ip.com/pubview/
IPCOMO000159161D; Oct. 10, 2007.

IBM; “A Method to Evaluate and Visualize the Tab Navigation Qual-
ity of a User Interface”; http:/priorartdatabase.com/IPCOM/
000193473; Feb. 25, 2010.

Shrader, TIL.-et al.; “User Interface for Database Command Line
Applications”; http://www.ip,com/pubview/IPCOMO000108013D;
Apr. 1, 1992.

Unger, A.-et al.; “Visual Support for the Understanding of Simulation
Processes”; IEEE Pacific Visualization Symposium; pp. 57-64; 2009.

* cited by examiner

Primary Examiner — Boris Pesin

Assistant Examiner — Elizabeth G Wright

(74) Attorney, Agent, or Firm — Convergent Law Group
LLP

(57) ABSTRACT

A computer-implemented method for event visualization and
control performed by a software component executing on a
processor, comprises: receiving as input one or more events
currently executing on a computer, the one or more events
comprising both applications and processes, and user-initi-
ated background events performed by the applications and
processes; displaying a graphical user interface (GUI) show-
ing the one or more events along a percent completion time-
line, and dynamically updating the GUI such that each of the
one or more events move through the percent completion
timeline as the one or more events process; and providing
interface controls that enable a user to dynamically perform
actions on the one or more events, wherein the actions include
start, stop, delete, pause, and reorder.

1 Claim, 7 Drawing Sheets

305

.
Search .
Field -+--

TE .
AAAAAAAAAAAAAAAA SIAOR B RO 3 (< e 111}y BOUNROURICOS

Order
Queue
302

312

U.S. Patent

US 9,250,784 B2

Feb. 2, 2016 Sheet 1 of 7
Y
Computer 4
Processor Memory /O
6 8 10

Operating System 12

Applications
14

Event Handling

Visualizer Application

(EHVA)
16

Display Screen 18

User Interactions
20

FIG.

1

U.S. Patent Feb. 2, 2016 Sheet 2 of 7 US 9,250,784 B2

Receive as input one or more events currently executing
on a computer, the one or more events comprising both
applications and processes, and user-initiated
background events performed by the applications and
processes
200

Y

Display a graphical user interface (GUI) showing the one
or more events along a percent completion timeline, and
dynamically update the GUI such that each of the one or
more events move through the percent completion
timeline as the one or more events process
202

A

Provide interface controls that enable a user to
dynamically perform actions on the one or more events,
wherein the actions include start, stop, delete, pause,
and reorder
204

FIG. 2

US 9,250,784 B2

Sheet 3 of 7

Feb. 2, 2016

U.S. Patent

V€

Old

Bplo

HOI08X3

Y0E
siueng

poinpoYs

AL

-PIeid

yoseag

\. S0g

0ig

: 1BQjoo]

00¢

U.S. Patent Feb. 2, 2016 Sheet 4 of 7 US 9,250,784 B2

FIG. 3B

300
310

<
2583
8“0@8
e A®
$0&
(1)

Toolbar

US 9,250,784 B2

Sheet S of 7

Feb. 2, 2016

U.S. Patent

apio

SIUBAT

Ponpayos

LONNodX 3

Y Goe

01€
1BQjo0 |

_ 00¢

US 9,250,784 B2

Sheet 6 of 7

Feb. 2, 2016

208
MOPUIA
6o

. o s s s s

U.S. Patent

009

e TeneA ARG o / 00%

US 9,250,784 B2

Sheet 7 of 7

Feb. 2, 2016

U.S. Patent

9

Old

/

~—— 009 JueAJ

US 9,250,784 B2

1
EVENT VISUALIZATION AND CONTROL

BACKGROUND

A task manager is an application included with an operat-
ing system that allows the user to see processes currently
running on a computer. The task manager may display infor-
mation regarding running applications, including hidden pro-
grams that run on startup, and utilities. For example, the task
manager included with Microsoft Windows™ displays
detailed information in a task list regarding programs cur-
rently running on the computer. Running applications are
displayed under an Applications tab and running processes
are displayed under a Processes tab. The task manager may
also display computer resource information such as CPU
usage, memory information, network activity and logged-in
users. The Applications tab also displays the status of each
running application, e.g., running or not responding.

The task manager may also allow the user to take action
respect to the running processes, such as to kill a running
process or to create a new process. For example, while in the
Applications tab, right-clicking any of the applications in the
list provides the user with options to switch to that applica-
tion, end the application, and show the process on the Pro-
cesses tab that is associated with the application. Choosing
the “End Task” option from the Applications tab causes a
request to be sent to the application for it to terminate.

While in the Processes tab, right-clicking a process in the
list provides the user with options to change the process’s
priority, set which CPU(s) the process can execute on, and
end the process. Choosing to the “End Process” option causes
Windows to kill the process. Choosing the “End Process
Tree” option causes Windows to kill the process, as well as all
processes started by that process.

While conventional task managers allow users to monitor
concurrently running processes, conventional task managers
do not enable the user to also monitor user initiated events
associated with the running applications, which once initiated
run in the background. Examples of such user-initiated events
or tasks include save and copy, for instance. In addition,
conventional task managers typically display running pro-
cesses in table format and do not provide a rich visual expe-
rience for the user to easily monitor running process and to
modify the running processes.

Accordingly, it would be desirable to provide an improved
event processing visualization application.

BRIEF SUMMARY

The exemplary embodiment provides methods and sys-
tems for event visualization and control performed by a soft-
ware component executing on a processor. Aspects of exem-
plary embodiment include receiving as input one or more
events currently executing on a computer, the one or more
events comprising both applications and processes, and user-
initiated background events performed by the applications
and processes; displaying a graphical user interface (GUI)
showing the one or more events along a percent completion
timeline, and dynamically updating the GUI such that each of
the one or more events move through the percent completion
timeline as the one or more events process; and providing
interface controls that enable a user to dynamically perform
actions on the one or more events, wherein the actions include
start, stop, delete, pause, and reorder.

25

35

40

45

50

2
BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 is a logical block diagram illustrating an exemplary
system environment for implementing one embodiment of an
event processing visualization application.

FIG. 2 is a flow diagram illustrating one embodiment of a
process for event visualization and control.

FIGS. 3A and 3B are diagrams illustrating example
embodiments for an event handling visualization screen of
the GUI displayed by the event handling visualization appli-
cation (EHVA).

FIG. 4 is a diagram illustrating interface controls for allow-
ing the user to dynamically perform actions on the events as
well as functions of the toolbar of the event handling visual-
ization screen.

FIG. 5 is a diagram illustrating the event reporting function
of the EHVA.

FIG. 6 is a diagram illustrating the event error handling
function of the EHVA.

DETAILED DESCRIPTION

The exemplary embodiment relates to event handling visu-
alization and control. The following description is presented
to enable one of ordinary skill in the art to make and use the
invention and is provided in the context of a patent application
and its requirements. Various modifications to the exemplary
embodiments and the generic principles and features
described herein will be readily apparent. The exemplary
embodiments are mainly described in terms of particular
methods and systems provided in particular implementations.
However, the methods and systems will operate effectively in
other implementations. Phrases such as “exemplary embodi-
ment”, “one embodiment” and “another embodiment” may
refer to the same or different embodiments. The embodiments
will be described with respect to systems and/or devices
having certain components. However, the systems and/or
devices may include more or less components than those
shown, and variations in the arrangement and type of the
components may be made without departing from the scope
of the invention. The exemplary embodiments will also be
described in the context of particular methods having certain
steps. However, the method and system operate effectively
for other methods having different and/or additional steps and
steps in different orders that are not inconsistent with the
exemplary embodiments. Thus, the present invention is not
intended to be limited to the embodiments shown, but is to be
accorded the widest scope consistent with the principles and
features described herein.

FIG. 1 is a logical block diagram illustrating an exemplary
system environment for implementing one embodiment of an
event processing visualization application. The system 2
includes a computer 4 having at least one processor 6, a
memory 8, input/output (I/0) 10, and a display screen 18
coupled together via a system bus (not shown). The computer
4 may exist in various forms, including, a tablet computer, a
personal computer (e.g., desktop, laptop, or notebook), a
set-top box, a game system, a smart or mobile phone, and the
like. The computer 4 may include other hardware compo-
nents of typical computing devices, including input devices,
such as, a keyboard, pointing device, a microphone, buttons,
touch screen, etc. (not shown), and output devices, such as
speakers, and the like (not shown). The memory 8 may com-
prise various types of computer-readable media, e.g., flash
memory, hard drive, optical disk drive, magnetic disk drive,
and the like, containing computer instructions that implement

US 9,250,784 B2

3

the functionality disclosed when executed by the processor.
The computer 4 may further include wired or wireless net-
work communication interfaces for communication.

The processor 6 may be part of data processing system
suitable for storing and/or executing software code, which
may comprise an operating system 12 and various applica-
tions 14. The processor 6 may be coupled directly or indi-
rectly to elements of the memory 8 through a system bus (not
shown). The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

The input/output 10 or /O devices can be coupled to the
system either directly or through intervening I/O controllers.
Network adapters (not shown) may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modems and Ethernet cards are just a
few of the currently available types of network adapters.

The operating system 12 and/or the applications 14 (such
as a web browser, a word processor, a photo/movie editor, and
the like) are hereinafter referred to as “the software”. During
execution of the software, events may be generated corre-
sponding to programs and processes running on the computer
4 which may comprise operating system 12 processes and
application 14 program processes. Depending on the operat-
ing system 12, a process may be made up of multiple threads
of execution that execute instructions concurrently. As used
herein, the term events may also include user-initiated back-
ground events performed by the applications and processes,
such as a copy and paste operation, for example.

Users may monitor details about programs and processes
running on a computer using a conventional task manager.
However conventional task managers typically only list the
running programs and processes in table format and do not
allow the user to monitor user-initiated background events.

According to the exemplary embodiment, the computer 4
executes an event handler visualizer application (EHVA) 16
that provides the user with event visualization and control
over the events. The EHVA 16 displays a graphical user
interface (GUI) that shows concurrently running events as
graphical representations on a dynamically updated percent
complete timeline. The EHVA 16 also provides interface
controls that allow the user to perform an expanded set of
actions on the events, as described below.

FIG. 2 is a flow diagram illustrating one embodiment of a
process for event visualization and control. The process may
begin by the EHVA receiving as input one or more events
currently executing on a computer, the one or more events
comprising both applications and processes, and user-initi-
ated background events performed by the applications and
processes (block 200).

At open of the EHVA 16, the EHVA 16 may perform a
system scan of all currently running events (e.g., processes
and applications) and monitor initiation of new events. In one
embodiment, the EHVA 16 may retrieve a list of events from
the operating system 12 (e.g., Microsoft Task Manager
events) and/or directly from the applications and processes,
including user-initiated background events. Examples of
user-initiated background events include operation such as
Copy, Move, Upload, Download, Convert File, and the like).
The EHVA 16 may also retrieve corresponding metadata

10

15

20

25

30

35

40

45

50

55

60

65

4

about the events, immediately catalog the events, and assign
each of the events a graphical representation, such as an icon,
based on event type.

The EHVA 16 displays a graphical user interface (GUI)
showing the one or more events along a percent completion
timeline, and dynamically updates the GUI such that each of
the one or more events move through the percent completion
timeline as the one or more events process (block 202).

FIGS. 3A and 3B are diagrams illustrating example
embodiments for an event handling visualization screen of
the GUI displayed by the event handling visualization appli-
cation 16, where like reference numerals have like reference
numbers. In one embodiment, the event handling visualiza-
tion screen 300 comprises an execution order queue 302, a
percent completion timeline 305, a completed events bar 306,
a toolbar 310 and a search field 312.

According to the exemplary embodiment, the percent
completion timeline 306 is displayed between the execution
order queue 302 and the completed events bar 306. For
example, FIG. 3A shows the execution order queue 302 dis-
played in a rectangular graph format, with the execution order
queue 302 and the completed events bar 306 displayed on
opposite sides of the percent completion timeline 305. In the
example shown, the execution order queue 302 is displayed at
the bottom the percent completion timeline 305 and the com-
pleted events bar 306 displayed at the top. However, in
another embodiment, the execution order queue 302 may be
displayed above the percent completion timeline 306, while
the completed events bar 306 may be displayed below the
percent completion timeline 305.

FIG. 3B shows the percent completion timeline 305 dis-
played in a sphere format, with the execution order queue 302
is displayed outside of the percent completion timeline 306,
and the completed events bar 306 is displayed in the center of
the percent completion timeline 305.

In both embodiments shown in FIGS. 3A and 3B, events
scheduled for execution are first displayed in the execution
order queue 302 as schedule events 304 A. During execution,
the events are dynamically moved through the percent
completion timeline 305 toward the completed events bar 306
as running events 304B, and after completion are displayed in
the completed events bar 306 as completed events 304C. As
used herein, the scheduled events 304A, the running events
304B, and the completed events 304C, are collectively
referred to as events 304.

In one embodiment, the execution order queue 302 dis-
plays scheduled events 304 A such that the placement order of
the scheduled events 304 A indicates the execution priority of
the scheduled events 304A. in the embodiments shown,
scheduled events 304A in the front (left side) of the execution
order queue 302 have higher priority than those in the back of
the execution order queue 302.

When the computer begins to execute/process/run each of
the scheduled events 304A, the EHVA 16 removes the sched-
uled events 304A from the execution order queue 302 and
displays the scheduled events 304A as running events 304B
on the percent completion timeline 305.

In one embodiment, the EHVA 16 displays the percent
completion timeline 305 with rows demarking percent of
completion levels from zero percent to one hundred percent,
and columns configured as paths of movement for the running
events 304B. In one embodiment, the percent completion
timeline 305 may include rows indicating “0%-25%", “25%-
50%”, and “75%-100%". In one embodiment, graphical rep-
resentations of the running events 304B may be moved along
their respective columns of the percent completion timeline
305 using discrete increments or using smooth animation. In

US 9,250,784 B2

5

another embodiment, colors may also be used to indicate
changes to the percent completion of the events. In one
embodiment, a textual representation of the progress in per-
cent format may also be displayed for each column. In the
example of FIG. 3A, the textual representation of the progress
is shown displayed in the columns of the completed events bar
306.

According to the exemplary embodiment, motion of the
running events 304B along the columns of the percent
completion timeline 305 visualizes for the user process pro-
gression of the running events 304B both individually and in
relation to one another.

Referring again to FIG. 2, the EHVA 16 further provides
interface controls that enable a user to dynamically perform
actions on the one or more events, wherein the actions include
start, stop, delete, pause, and reorder (block 204).

FIG. 41is a diagram illustrating interface controls for allow-
ing the user to dynamically perform actions on the events as
well as functions of the toolbar of the event handling visual-
ization screen. In one embodiment, only one of the interface
controls may be revealed at a time based on user clicks.
Responsive to the user selecting an event 304, e.g., by right
clicking, a pop-up control sheet window 400 may be dis-
played showing the actions may be performed. In the example
shown, the control sheet window 400 displays interface con-
trols in the form of'icons and/or text for start, stop, delete, and
pause. In a further embodiment, the control sheet window 400
may also display an interface control for allowing the user to
configure a delayed start for the event.

FIG. 4 also displays functions of the toolbar 310, which
include interface controls that allow the user to select one or
more of: ascreen refresh rate, filter events by the applications,
a type of task, and view by options.

Referring again to FIGS. 3A and 3B, interface controls for
allowing the user to perform a reorder may include reorder
handles 314 displayed in each column of the percent comple-
tion timeline 305, which the user can move to change the
order of the columns; and enabling the user to perform a
“drag-and-drop” operation on any of the scheduled events
304A displayed in the execution order queue 302 to change
positional order of the execution order queue 302. For
example, assume that an event for report generation has
become the highest priority but is very far down in the execu-
tion order queue 302. In this case, the user can drag-and-drop
the icon for the report generation event to the front of the
execution order queue 302 for expedited processing.

In a further embodiment, the EHVA 16 is configured to
perform event logging and reporting functions. FIG. 5 is a
diagram illustrating the event reporting function ofthe EHVA
16. In response to the user clicking a log interface control,
such as a logicon 500 from the event visualization screen 300,
a log window 502 showing attributes of past and current
events may be displayed. In one embodiment, the events are
displayed in rows of a table where columns of the table
represent the attributes, such as initiated date, initiated time,
elapsed time, task, status, application, title, and the like. The
user may change the sort order of the log window 502 by
selecting control headers such as application, tasks, and view
by. In one embodiment, each row of events may be expanded
to display a progress history of that the event, including an
event video 504.

In yet a further embodiment, the EHVA 16 is configured to
perform event error handling functions. FIG. 6 is a diagram
illustrating the event error handling function of the EHVA 16.
In response to detecting that an event 600 has experienced in
error, the EHVA 16 may display the column of the percent
completion timeline corresponding to the event 600 in a dif-

5

10

15

20

25

30

40

45

50

55

60

6

ferent color (e.g., red), and an error control sheet window
602A may be displayed listing attributes of the error.
Examples of'the attributes displayed in the error control sheet
602 A may include the type of error, the application, the task,
the time initiated, elapsed time, percent complete, and user
configurable alerts. In response the user clicking on a control
in the error control sheet 602A, possible remedies for the
error be displayed to the user, as shown in error control sheet
602B.

The event handling visualizer application 16 of the exem-
plary embodiment is capable of monitoring each individual
concurrent process within an application (e.g., Save, Copy,
Web Push, and the like.), which is an improvement over
conventional system-based task managers that monitor activ-
ity only at an application level as a combined processing of
multiple events until the last concurrent event has completed,
but not each unique concurrent event within each application.
The EHVA 16 allows the user to not only view these indi-
vidual concurrent unique events within a single application,
but to also modify and reorder processing of the events.

A method and system for event visualization and control
have been disclosed. As will be appreciated by one skilled in
the art, aspects of the present invention may be embodied as
asystem, method or computer program product. Accordingly,
aspects of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects of the
present invention may take the form of a computer program
product embodied in one or more computer readable
medium(s) having computer readable program code embod-
ied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network

US 9,250,784 B2

7

(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention have been described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The present invention has been described in accordance
with the embodiments shown, and one of ordinary skill in the
art will readily recognize that there could be variations to the
embodiments, and any variations would be within the spirit

8

and scope of the present invention. Accordingly, many modi-
fications may be made by one of ordinary skill in the art
without departing from the spirit and scope of the appended
claims.
I claim:
1. A system, comprising:
a memory;
a processor coupled to the memory; and
a software component executed by the processor that is
configured to:
receive as input one or more events currently executing on
a computer, the one or more events comprising both
applications and processes, and user-initiated back-
ground events performed by the applications and pro-
cesses, wherein the user-initiated background events
comprise operations including Copy, Paste, Move, Save,
Upload, Download, and Convert File;
display a graphical user interface (GUI) showing the one or
more events along a percent completion timeline, and
dynamically update the GUT such that each of the one or
more events move through the percent completion time-
line as the one or more events process,
wherein the GUI displays the percent completion timeline
between an execution order queue and a completed
events bar, wherein the events scheduled for execution
are first displayed in the execution order queue as sched-
uled events, and during execution, are then simulta-
neously displayed on the percent completion timeline
and dynamically moved through the percent completion
timeline as running events, and after completion, are
displayed in the completed events bar as completed
events, and wherein the percent completion timeline is
displayed with rows demarking percent of completion
levels from zero percent to one hundred percent, and
columns configured as paths of movement for the run-
ning events; and
provide interface controls that enable a user to dynamically
perform actions on the one or more events, wherein the
actions include start, stop, delete, pause and reorder.

#* #* #* #* #*

